If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+48t+80=0
a = -16; b = 48; c = +80;
Δ = b2-4ac
Δ = 482-4·(-16)·80
Δ = 7424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7424}=\sqrt{256*29}=\sqrt{256}*\sqrt{29}=16\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{29}}{2*-16}=\frac{-48-16\sqrt{29}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{29}}{2*-16}=\frac{-48+16\sqrt{29}}{-32} $
| (y-1)=y+12 | | -6x+5=-2x-15 | | 8y-5=3y+35 | | 15/x=20/21 | | 4y+4=2y+15 | | 18g^2-8=0 | | 9m^2-76=-40 | | z^2-58=32 | | p^2-84=0 | | 5x+6=-20+8x | | q^2=-50 | | 0.8(10.000)-0.05y=0.05(y+10.000) | | 1/6(x+6)+1/18=x+14 | | (2x+11)/(x+3)=0 | | 3/x+4=5/2x+17/4 | | 58=6y-3 | | 57=6y-6 | | 2(4x+3)=-4(2x-3)+5x | | 2/5a=-3/5 | | 1/2b=-7/8 | | 2(x-5)-14=-26 | | 2a=7/2 | | 3(x-6)+5=-22 | | 8r=4r-8 | | 14x+43=180 | | 60=24x^2-2x | | 60=24x-2x | | -5x+40=4x-5 | | X-8=-6x+10 | | 12x-80=-6x10 | | 14x-32=-10x+40 | | 12x+40=-8x+100 |